

FEATURES:

- Single 3.0-Volt Read and Write Operations
- Separate Memory Banks by Address Space
 - Bank1: 4Mbit (256K x 16 / 512K x 8) Flash
 - relininary - Bank2: 12Mbit (768K x 16 / 1536K x 8) Flash
 - Simultaneous Read and Write Capability
- Superior Reliability
 - 100,000 Cycles (Erase Verify Mode) - Endurance: 10,000 Cycles
 - Data Retention: 10 years
- Low Power Consumption
 - Active Current, Read:
 - Active Current, Read & Write:
 - Standby Current:
 - Auto Low Power Mode Current:
- **Fast Write Operation**
 - Chip Erase + Program:
 - Block Erase + Program:
 - Sector Erase + Program:
- Fixed Erase, Program, Write Times
 - Does not change after cycling

- **Read Access Time**
 - 80 ns
- Latched Address and Data
- **End of Write Detection**
 - Toggle Bit / Data # Polling / RY/BY#
- Write Protection by WP# pin
- **Erase Verify Mode**
- Flash Bank: Two Small Erase Element Sizes
 - 1K Words per Sector or 32K Words per Block
 - Erase either element before Word Program
- CMOS I/O Compatibility
- **Packages Available**
 - 48-Pin TSOP (12mm x 20mm)
- **Continuous Hardware and Software Data** Protection (SDP)

Product Description

The LE28DW1621T consists of two memory banks, Bank1 is a 256K x 16 bits or 512K x 8 sector mode flash EEPROM and Bank2 is a 768K x 16 bits or 1536K x 8 sector mode flash EEPROM, manufactured with SANYO's proprietary, high performance FlashTechnology. The LE28DW1621T writes with a 3.0-volt-only power supply.

The LE28DW1621T is divided into two separate memory banks. Bank1 contains 256 sectors of 1K words or 8 blocks of 32K words, Bank2 contains 768 sectors of 1K words or 24 blocks of 32K words.

Any bank may be used for executing code while writing data to a different bank. Each memory bank is controlled by separate Bank selection address (A18,A19) lines.

The LE28DW1621T inherently uses less energy during Erase, and Program than alternative flash technologies. The total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the Flash technology uses less current to program and has a shorter Erase time, the total energy consumed during any Erase or Program operation is less than alternative flash technologies. The Auto Low Power mode automatically reduces the active read current to approximately the same as standby; thus, providing an average read current of approximately 1 mA/MHz of Read cycle time.

The Flash technology provides fixed Erase and Program times, independent of the number of erase/program cycles that have occurred. Therefore the system software or hardware does not have to be modified or derated as is necessary with alternative flash technologies, whose Erase and Program times increase with accumulated erase/program cycles.

Device Operation

The LE28DW1621T operates as independent 4Megabit and 12Megabit Word Pogram, Sector Erase flash EEPROMs. Two memory Banks are spareted by the address space.

The Bank1 is assigned as C0000h to FFFFFh, Bank2 is assigned as 00000h to BFFFFh.

All memory banks share common I/O lines, WE#, and OE#. Memory bank selection is by bank select address(A19, A18). WE# is used with SDP to control the Erase and Program operation in each memory bank.

The LE28DW1621T provides the added functionality of being able to simultaneously read from one memory bank while erasing, or programming to one other memory bank. Once the internally controlled Erase or Program cycle in a memory bank has commenced, a different memory bank can be accessed for read. Also, once WE# and CE# are high during the SDP load sequence, a different bank may be accessed to read. LE28DW1621T which selectes banks (A19, A18) by a address. It can be used as a normal conventinal flash memory when operats erase or program operation to only a bank at nonconcurrent operation.

The device ID cannot be accessed while any bank is writing, erasing, or programming.

15 sec (typical) 500 ms (typical) 30 ms (typical)

10 mA (typical)

30 mA (typical)

5µA (typical)

5µA (typical)

The Auto Low Power Mode automatically puts the LE28DW1621T in a near standby mode after data has been accessed with a valid Read operation. This reduces the I_{DD} active read current from typically 10mA to typically 5 μ A. The Auto Low Power mode reduces the typical I_{DD} active read current to the range of 1mA/MHz of Read cycle time. If a concurrent Read while Write is being performed, the I_{DD} is reduced to typically 40mA. The device exits the Auto Low Power mode with any address transition or control signal transition used to initiate another Read cycle, with no access time penalty.

Read

The Read operation of the LE28DW1621T Flash banks is controlled by CE# and OE#, a chip enable and output enable both have to be low for the system to obtain data from the outputs. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when OE# is high. Refer to the timing waveforms for further details (Figure 3).

When the read operation is executed without address change after power switch on, CE# should be changed the level high to low. If the read operation is executed after programing, CE# should be changed the level high to low.

Write

All Write operations are initiated by first issuing the Software Data Protect (SDP) entry sequence for Chip, Block, or Sector Erase. Word Program in the selected Flash bank. Word Program and all Erase commands have a fixed duration, that will not vary over the life of the device, i.e., are independent of the number of Erase/Program cycles endured.

Either Flash bank may be read to another Flash Bank during the internally controlled write cycle.

The device is always in the Software Data Protected mode for all Write operations Write operations are controlled by toggling WE# or CE#. The falling edge of WE# or CE#, whichever occurs last, latches the address. The rising edge of WE# or CE#, whichever occurs first, latches the data and initiates the Erase or Program cycle.

For the purposes of simplification, the following descriptions will assume WE# is toggled to initiate an Erase or Program. Toggling the applicable CE# will accomplish the same function. (Note, there are separate timing diagrams to illustrate both WE# and CE# controlled Program or Write commands.)

Word Program

The Word Program operation consists of issuing the SDP Word Program command, initiated by forcing CE# and WE# low, and OE# high. The words to be programmed must be in the erased state, prior to programming. The Word Program command programs the desired addresses word by word. During the Word Program cycle, the addresses are latched by the falling edge of WE#. The data is latched by the rising edge of WE#. (See Figure 4-1 for WE# or 4-2 for CE# controlled Word Program cycle timing waveforms, Table 3 for the command sequence, and Figure 15 for a flowchart.)

During the Erase or Program operation, the only valid reads from that bank are Data# Polling and Toggle Bit. The other bank may be read.

The specified Chip, Block, or Sector Erase time is the only time required to erase. There are no preprogramming or other commands or cycles required either internally or externally to erase the chip, block, or sector.

Erase Operations

The Chip Erase is initiated by a specific six-word load sequence (See Tables 3). A Bank Erase will typically be less than 70 ms.

An alternative to the Chip Erase in the Flash bank is the Block or Sector Erase. The Block Erase will erase an entire Block (32K words) in typically 15 ms. The Sector Erase will erase an entire sector (1024 words) in typically 15 ms. The Sector Erase provides a means to alter a single sector using the Sector Erase and Word Program modes. The Sector Erase is initiated by a specific six-word load sequence (see Table 3).

During any Sector, Block, or Chip Erase within a bank, any other bank may be read.

Chip Erase

The LE28DW1621T provides a Chip Erase mode, which allows the user to clear the Flash bank to the "1"state. This is useful when the entire Flash must be quickly erased.

The software Flash Chip Erase mode is initiated by issuing the specific six-word loading sequence, as in the Software Data Protection operation. After the loading cycle, the device enters into an internally timed cycle. (See Table 3 for specific codes, Figure 5-1 for a timing waveform, Figure 12 for a flowchart.)

Block Erase

The LE28DW1621T provides a Block Erase mode, which allows the user to clear any block in the Flash bank to the "1"state.

The software Block Erase mode is initiated by issuing the specific six-word loading sequence, as in the Software Data Protect operation. After the loading cycle, the device enters into an internally timed Erase cycle. (See Table 3 for specific codes, Figure 5-2 for the timing waveform, and Figure 13 for a flow-chart.) During the Erase operation, the only valid reads are Data# Polling and Toggle Bit from the selected bank, other banks may perform normal read.

Sector Erase

The LE28DW1621T provides a Sector Erase mode, which allows the user to clear any sector in the Flash bank to the "1" state.

The software Sector Erase mode is initiated by issuing the

specific six-word loading sequence, as in the Software Data Protect operation. After the loading cycle, the device enters into an internally timed Erase cycle. (See Table 3 for specific codes, Figure 5-3 for the timing waveform, and Figure 14 for a flowchart.) During the Erase operation, the only valid reads are Data# Polling and Toggle Bit from the selected bank, other banks may perform normal read.

Erase Verify Mode

The LE28DW1621T provides a Erase Verify Mode in order to improve the erase / programming cycles over ten times greater than normal mode. The memory cell is given a optimum margin by executing Chip erase , Block erase or Sector erase after this mode is excecuted. The Erase Verify flow shoud be executed at erase operation. If verify operation becomes bad, the re-erase operation is permited within a reguration times. Refer to Fig.20 for a flowchart at Erase Verify Mode.(See Table3 for specific codes and Fig.6 for Timing waveform)

When return to a normal mode from Erase Verify mode, the Erase Verify Exit command should be excuted. This command is the same as a Software ID Exit mode. (See Table 3 for specific codes and Fig10 for Timing waveforms.)

Write Operation Status Detection

The LE28DW1621T provides two software means to detect the completion of a Flash bank Program cycle, in order to optimize the system Write cycle time. The software detection includes two status bits : Data# Polling (DQ_7) and Toggle Bit (DQ_6). The end of Write Detection mode is enabled after the rising edge of WE#, which initiates the internal Erase or Program cycle.

The actual completion of the nonvolatile write is a synchronous with the system; therefore, either a Data# Polling or Toggle Bit read may be simultaneous with the completion of the Write cycle. If this occurs, the system will possibly get an erroneous result, i.e. valid data may appear to conflict with either DQ₇ or DQ₆. In order to prevent spurious device rejection, if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both reads are valid, then the device has completed the Write cycle, otherwise the rejection is valid.

There is no provision to abort an Erase or Program operation, once initiated. For the SANYO Flash technology, the associated Erase and Program times are so fast, relative to system reset times, there is no value in aborting the operation. Note, reads can always occur from any bank not performing an Erase or Program operation.

Should the system reset, while a Block or Sector Erase or Word Program is in progress in the bank where the boot code is stored, the system must wait for the completion of the operation before reading that bank. Since the maximum time the system would have to wait is 25 ms (for a Block Erase), the system ability to read the boot code would not be affected.

Data# Polling (DQ7)

When the LE28DW1621T is in the internal Flash bank Program cycle, any attempt to read DQ₇ of the last word loaded during the Flash bank Word Load cycle will receive the complement of the true data. Once the Write cycle is completed, DQ₇ will show true data. The device is then ready for the next operation. (See Figure 6 for the Flash bank Data Polling timing waveforms and Figure 16 for a flowchart.)

Toggle Bit (DQ₆)

During the Flash bank internal Write cycle, any consecutive attempts to read DQ_6 will produce alternating 0's and 1's, i.e. toggling between 0 and 1. When the Write cycle is completed, the toggling will stop. The device is then ready for the next operation. (See Figure 7 for Flash bank Toggle Bit timing waveforms and Figure 16 for a flowchart.)

Data Protection

The LE28DW1621T provides both hardware and software features to protect nonvolatile data from inadvertent writes.

Hardware Data Protection

Noise/Glitch Protection: A WE# pulse of less than 5 ns will not initiate a Write cycle.

 V_{DD} Power Up/Down Detection: The Write operation is inhibited when V_{DD} is less than 1.5 volts.

Write Inhibit Mode: Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down.

The LE28DW1621T provides a protect area by hardware protection. The assigned address is the upper are of 2Mega bit in Bnak1(E0000 to FFFFh), which is set up by WP# when low.

When this operation is executed, the functions which are Sector erase, Block erase or Word program can not be accepted.

When the Chip erase operation is executed, all area will be erased except protected area.

Hardware Reset Function

The LE28DW1621T provides a Hardware Reset function which set up by RESET# being low.

RESET# pin need a low puls longer than tRP. It needs a wait priode while tRESET from Rise edge of RESET#.

The data can't be guranteed to excute the Reset operation while write operation.

Software Data Protection (SDP)

The LE28DW1621T provides the JEDEC approved software data protection scheme as a requirement for initiating a Write, Erase, or Program operation. With this scheme, any Write operation requires the inclusion of a series of three word-load operations to precede the Word Program operation. The three-

word load sequence is used to initiate the Program cycle, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or power-down. The six-word sequence is required to initiate any Chip, Block, or Sector Erase operation.

The requirements for JEDEC compliant SDP are in byte format. The LE28DW1621T is organized by word; therefore, the contents of DQ₈ to DQ₁₅ are "Don't Care"during any SDP (3-word or 6-word) command sequence.

During the SDP load command sequence, the SDP load cycle is suspended when WE# is high. This means a read may occur to any other bank during the SDP load sequence.

The bank reserve in SDP load sequence is reserved by the bus cycle of command materialization. If the command sequence is aborted, e.g., an incorrect address is loaded, or incorrect data is loaded, the device will return to the Read mode within T_{RC} of execution of the load error.

Concurrent Read and Write Operations

The LE28DW1621T provides the unique benefit of being able to read any bank, while simultaneously erasing, or programming one other bank. This allows data alteration code to be executed from one bank, while altering the data in another bank. The next table lists all valid states.

Concurrent Read/Write State Table

Bank1	Bank2		
Read	No Operation		
Read	Write		
Write	Read		
No Operation	Write		
Write	No Operation		
No Operation	Read		

Note: For the purposes of this table, write means to Block, Sector, or Chip Erase, or Word Program as applicable to the appropriate bank.

The device will ignore all SDP commands and toggling of WE# when an Erase or Program operation is in progress. Note, Product Identification entry commands use SDP; therefore, this command will also be ignored while an Erase or Program, operation is in progress.

Product Identification

The product identification mode identifies the device manufacturer as SANYO and provides a code to identify each bank. The manufacturer ID is the same for each bank; however, each bank has a separate device ID. Each bank is individually accessed using the applicable Bank Address and a software command. Users may wish to use the device ID operation to identify the write algorithm requirements for each bank. (For details, see Table 3 for software operation and Figures 8 for timing waveforms.)

Product Identification Table

	Word	Data (Word Mode)	Data (Byte Mode)
Maker ID	0000H	0062H	62H
Device Code(Bank1)	0001H	257EH	7EH
Device Code(Bank2)	0001H	257DH	7DH

Device ID codes are unique to each bank. Should a chip ID be required, any of the bank IDs may be used as the chip ID. While in the read software ID mode, no other operation is allowed until after exiting these modes.

Product Identification Mode Exit

In order to return to the standard Read mode, the Product Identification mode must be exited. Exit is accomplished by issuing the Software ID exit command, which returns the device to normal operation. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that apparently causes the device to behave abnormally, e.g., not read correctly. For details, (see Table 3 for software operation and Figures 9 for timing waveforms.)

A15 A14 A13 A12 A11 A10 A9 A8 A19 NC WE# RESET# NC WP# RY/BY# A18 A17 A7 A6 A5 A4 A3 A2 A1	$ \begin{array}{c} 1 \bullet \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ \end{array} $	48 47 46 45 44 43 42 41 40 39 38 TSOP-I 37 Normal Bend 36 (12mm x 20mm) 34 33 32 31 30 29 28 27 26 25	A16 BYTE# VSS DQ15/A-1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 VDD DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ2 DQ9 DQ1 DQ8 DQ0 OE# VSS CE# A0
---	---	---	--

Figure 1 : Pin Description : TSOP-1 (12mm x 20mm)

Symbol	Pin Name	Function
A19,A18	Bank Select address	To activate the Bank1 when both are high, to activate the Bank2 when the other combination.
A19-A0,A-1	Flash Bank addresses	To provide Flash Bank address
A19-A15	Flash Bank Block addresses	To select a Flash Bank Block for erase
A19-A10	Flash Bank Sector addresses	To select a Flash Bank Sector for erase
DQ15-DQ0	Data Input/Output	To output data during read cycle and receive input data during write cycle. The outputs are in tristate when OE# is high or CE# is high.
CE#	Chip Enable	To activate the Flash Bank when CE# is low.
OE#	Output Enable	To gate the data output buffers.
WE#	Write Enable	To control the write, erase or program operations.
BYTE#	Byte selection	To select a Byte mode when low, to select a Word mode when high
RY/BY#	Ready / Busy output	To output low when write, other case is High-Z
WP#	Write Protect	To execute Hardware write protect when low
Vdd	Power Supply	To provide 3.0 volts supply.(2.7volts to 3.6 volts)
Vss	Ground	
NC	No Connection	Unconnected Pins

Table1: Pin Description

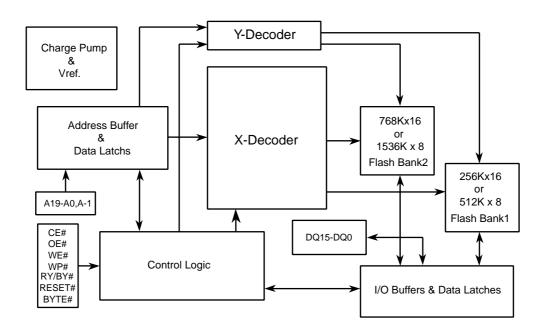


Figure 2-1: Functinaly Block Diagram

Bank1
FFC00h-FFFFFh
FF800h-FFBFFh
I
1
E0400h-E07FFh
E0000h-E03FFh
I
Total256 Sector
1
C0C00h-C0FFFh
C0800h-C0BFFh
C0400h-C07FFh
C0000h-C03FFh

Danke	
BFC00h-BFFFFh	
BF800h-BFBFFh	
BF400h-BF7FFh	
BF000h-BF3FFh	
I	
I	
I	
I	
I	
Total768Sector	
I	
I	
I	
I	
I	
I	
00C00h-00FFFh	
00800h-00BFFh	
00400h-007FFh	
00000h-003FFh	

Bank2

E0000h-FFFFFh:Data Protect Area

Figure 2-1: Flash Sector Structure

Array Operating Mode	CE#	OE#	WE#	DQ	A19	A18	A17-A0,A-1
Read							
Bank1	VIL	Vi∟	Vін	Dout	Vін	Vін	Ain
Bank2	VIL	VIL	Viн	Dout	Vil Vih	X VIL	Ain
Block Erase							
Bank1	Vi∟	VIH	Vi∟	Din	Vін	Vін	See Table 3
Bank2	VIL	Vін	VIL	Din	Vi∟ Vih	X VIL	See Table 3
Sector Erase							
Bank1	VIL	VIH	Vi∟	Din	Vін	VIH	See Table 3
Bank2	VIL	Vін	VIL	Din	Vi∟ Vih	X VIL	See Table 3
Program							
Bank1	VIL	Vih	Vi∟	Din	Viн	Vін	See Table 3
Bank2	VIL	Vін	VIL	Din	Vil Vih	X VIL	See Table 3
Stand-by	Vін	х	х	High Z	х	х	x
Write Inhibit	Vін	VIL	VIL	х	х	х	х
Chip Erase							
	VIL	Vih	VIL	Din	Х	х	See Table 3
Status Operating Mode	CE#	OE#	WE#	DQ	A19	A18	A17-A0,A-1
Product Identification							
Bank1	VIL	VIL	Vін	Dout	Viн	Vін	A17-A1=VIL,A-1=VIL Note2)
Bank2	VIL	VIL	Viн	Dout	Vil Vih	X VIL	A0=VIL or VIH

Note:Entering an illegal state during an Erase, Program, or Write operation will not affect the operation, i.e., the erase program, or write will continue to normal completion.

Note2: Byte Mode operation

Table:2 Operating Modes Selection

SANYO Electric Co., Ltd. Semiconductor Company 1-1-1 Sakata Oizumi Gunma Japan

Command Code	1stBus	Cycle	2ndBus	Cycle	3rdBus	Cycle	4thBus	Cycle	5thBus	Cycle	6thBus	Cycle
	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data
	Note1,4	Note5	Note1,4	Note5	Note1,4	Note5	Note1,4	Note5	Note1,4	Note5	Note1,4	Note5
Software ID Entry	5555	AA	2AAA	55	5555 +BAX	90	Note2					
Software ID Exit	5555	AA	2AAA	55	5555 +BAX	F0	Note3					
Word Program	5555	AA	2AAA	55	5555	A0	Word Address	Data In				
Sector Erase	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	SAX +BAX	30
Block Erase	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	LAX +BAX	50
Chip Erase	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	5555	10
Erase Verify Entry	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	5555	B0
Erase Verify Exit	5555	AA	2AAA	55	5555	F0						

Table:3 Software Command Codes

Notes for Software Product ID Command Code:

1. Command Code Address format : A14 - A0 are in HEX code.

2.With A14 - A0 = 0;

Sanyo Manufacturer Code = 0062H is read with A0 = 0 (Word Mode)

Sanyo Manufacturer Code = 62H is read with A0 = 0 and A-1 = 0 (Byte Mode)

Sanyo LE28DW1621T Device code 257Eh, 257Dh is read with A0 = 1. (Word Mode)

Sanyo LE28DW1621T Device code 7Eh, 7Dh is read with A0 = 1 and A-1 = 0. (Byte Mode)

3. The device does not remain in software Product ID Mode if powered down.

4.Address form A15 to A17 are 'Don't Care' for Command sequences. (Word Mode)

Address form A15 to A17and A-1 are 'Don't Care' for Command sequences. (Byte Mode)

A19,A18 are bank selection address have been reserved in last bus cycle of Command sequence.

5.Data format DQ0 to DQ7 are in HEX and DQ8 to DQ15 are "Don't Care".

6.BAX = Bank address: A19,A18, LAX = Block address:A19 to A15, SAX = Sector address: A19 to A10.

[Absolute Maximum Stress Ratings]

Applied conditions greater than those listed under "absolute maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.

Storage Temperature	: -65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential	: -0.5V to V_{DD} + 0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential Package Power	: -1.0V to V _{DD} + 1.0V
Package Power Dissipation Capability (Ta = 25°C)	: 1.0W
[Operating Range]	
Ambient Temperature	: 0°C to +70°C
VDD	2.7V to 3.6V
[AC condition of Test]	
Input Rise/Fall Time	: 5 ns
Output Load(See Figures 13 and 14)	: C _L = 30 pF

[DC Operating Characteristics]

Symbol	Parameter	Min	Max	Unit	Test Condition
IDD	Power Supply current Read		25	mA	CE# = VIL, WE# = VIH, I/O's open, Address Input = VIL/VIH, at f =10MHz,
	Write		50	mA	VDD = VDD(Max) CE# = WE# = VIL, OE# = VIH, VDD = VDD(Max)
	Read + Erase / Program		75	mA	CE# = VIL, OE# = WE# = VIH , Address Input = VIL/VIH, at f =10MHz, WE# = VIH, VDD = VDD(Max)
ISB	Standby current (CMOS input)		40	μA	CE# = VIHC , VDD = VDD(Max)
Ili Iol	Input Leak current Output Leak current		10 10	μΑ μΑ	VIN = Vss to VDD, VDD = VDD(Max) VOUT = Vss to VDD, VDD = VDD(Max)
VIL VILC VIH VIHC	Input Low Voltage Input Low Voltag (CMOS) Input High Voltag Input High Voltge (CMOS)	Vdd*0.8 Vdd-0.2	Vdd*0.2 0.2	V V V V	
Vol Voн	Output Low Voltag Output High Voltag	VDD-0.2	0.2	V V	IOL = 100μA, VDD = VDD(Min) IOH = -100μA, VDD = VDD(Min)

[Recommend System Power-up Timings]

Symbol	Parameter	Max	Units
TPU-READ ⁽¹⁾	Power-up to Read Operation	200	μs
TPU-WRITE ⁽¹⁾	Power-up to Write Operation	200	μs

Note(1): This parameter is measured only for initial qualification and after a design or process change that could affect this parameter

[Capacitance (Ta = 25°C, f = 1MHz, other pins open)]

Symbol	Parameter	Test Condition	Max
	I/O Pin Capacitance	V _{DQ} = 0V	12PF
	Input Capacitance	V _{IN} = 0V	6PF

Note(1): This parameter is measured only for initial qualirication and after a design or process change that could affect this parameter.

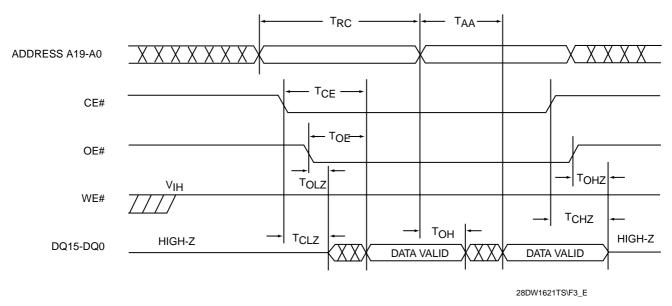
[Reliability Characteristic]

Symbol	Parameter	Min Spec	Units
NEND ⁽¹⁾	Endurance	10,000 100,000 (Erase Verify Mode)	Cycle/Sector
TDR ⁽¹⁾	Data Retention	10	Years

Note(1): This parameter is measured only for initial qualirication and after a design or process change that could affect this parameter.

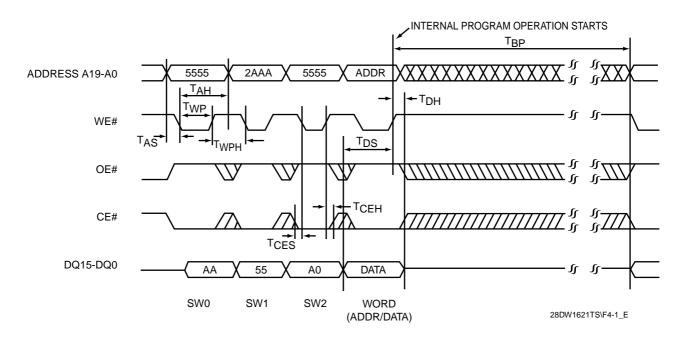
[AC Characteristic]

Read Cycle Timing Parameters

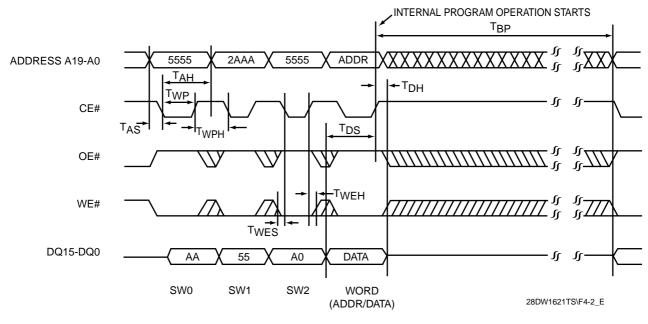

Symbol	Parameter	8 0		Units
		Min	Max	
TRC	Raed Cycle Time	80		ns
TCE	CE# Access Time		80	ns
Таа	Address Access Time		80	ns
Τοε	OE# Access Time		40	ns
TcLz ⁽¹⁾	BE# Low to Active Output	0		ns
Tolz ⁽¹⁾	OE# Low to Active Output	0		ns
Tснz ⁽¹⁾	BE# High to High-Z Output		30	ns
Тонz ⁽¹⁾	OE# High to High-Z Output		30	ns
тон ⁽¹⁾	Output Hold from Address Change	0		ns

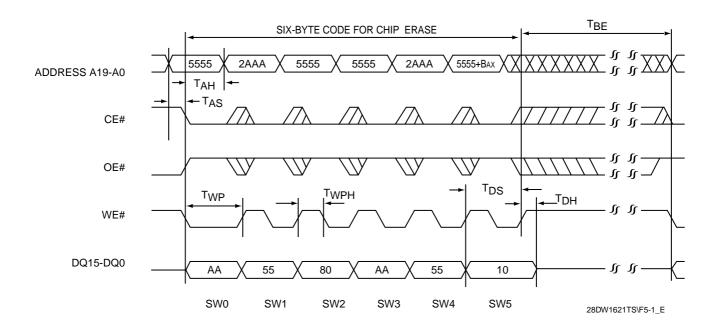
Write, Erase, Program Cycle, Timing Parameters

Symbol	Parameter	Min	Max	Units
Твр	Word Program Time		20	μs
TSE	Sector Erase Time		25	ms
TLE	Block Erase Time		25	ms
Тве	Bank Erase Time		100	ms
Tas	Address Setup Time	0		ns
Тан	Address Hold Time	50		ns
TCES	CE# Setup Time	0		ns
Тсен	CE# Hold Time	0		ns
Twes	WE# Setup Time	0		ns
TWEH	WE# Hold Time	0		ns
TOES	OE# High Setup Time	0		ns
Тоен	OE# High Hold Time	0		ns
Twp	WE# Puls Low Width	50		ns
TWPH	WE# Puls High Time	30		ns
TDS	Data Setup Time	50		ns
Трн	Data Hold Time	0		ns
TVDDR ⁽¹⁾	VDD Rise Time	0.1	50	ms
TEVA	Erase Verify Entry Time	150		ns
Tida	ID READ / Exit Cycle Time	150		ns
TBUSY	BUSY Output Time		80	ns
TRP	RESET Puls Width	500		ns
TREADY	RESET Recovery Time		20	μs

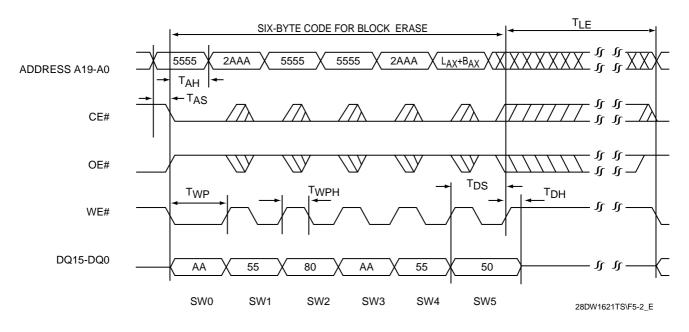

Note:(1) This parameter is measured only for initial qualification and after a desgin or process change that could affect this parameter.

Exsample for Word Mode, in Byte Mode A-1=Address Input



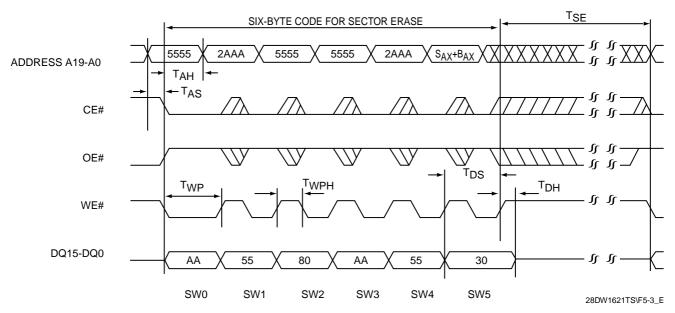

Exsample for Word Mode, in Byte Mode A-1=Address Input

Exsample for Word Mode, in Byte Mode A-1=Address Input

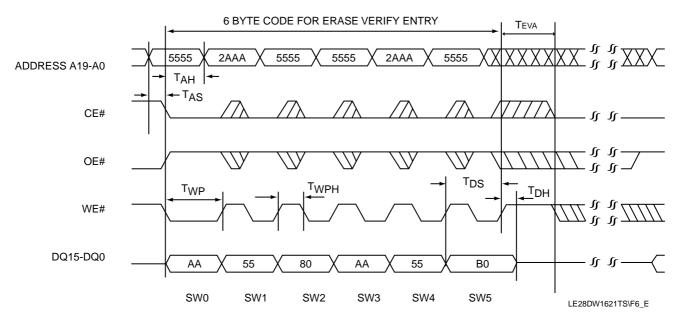


Exsample for Word Mode, in Byte Mode A-1= Don't care

Figure 5-1: Chip Erase Cycle Timing Diagram


Figure 4-2: CE# Controlled Word Program Cycle Timing Diagram

Exsample for Word Mode, in Byte Mode A-1= Don't care



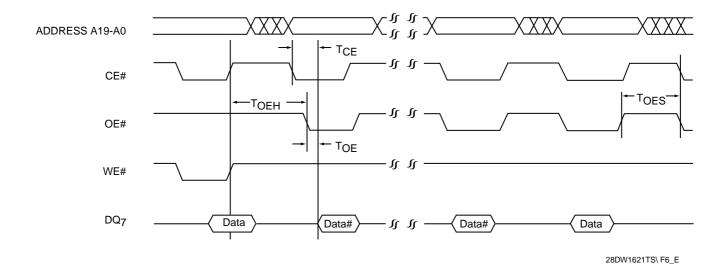

Exsample for Word Mode, in Byte Mode A-1= Don't care

Figure 5-3: Sector Erase Cycle Timing Diagram

Exsample for Word Mode, in Byte Mode A-1= Don't care

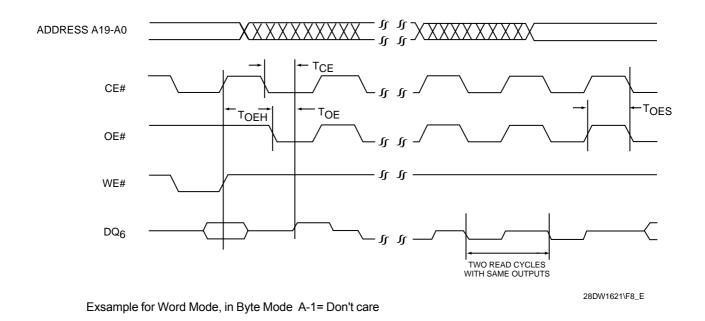

Exsample for Word Mode, in Byte Mode A-1= Address Input

Figure 7: Data# Polling Timing Diagram

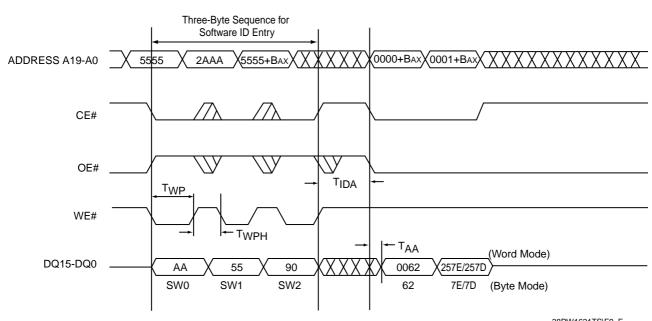
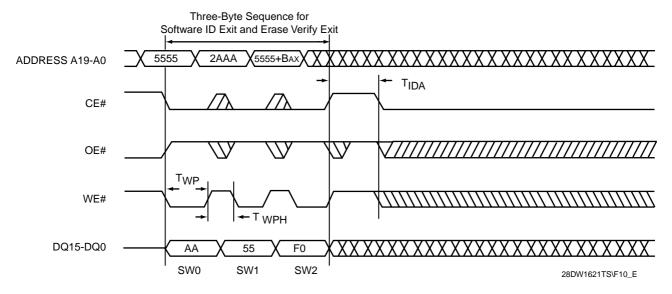
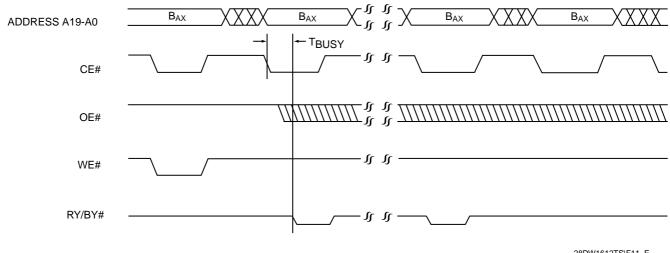

SANYO Electric Co., Ltd. Semiconductor Company 1-1-1 Sakata Oizumi Gunma Japan

Figure 6: Erase Verify Entry Timing Diagram



28DW1621TS\F9_E

Exsample for Word Mode, in Byte Mode A-1 = 0


Figure 9: Software ID Entry and Read

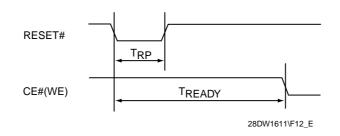
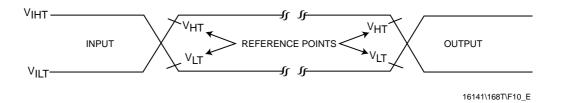
Exsample for Word Mode, in Byte Mode A-1= Don't care

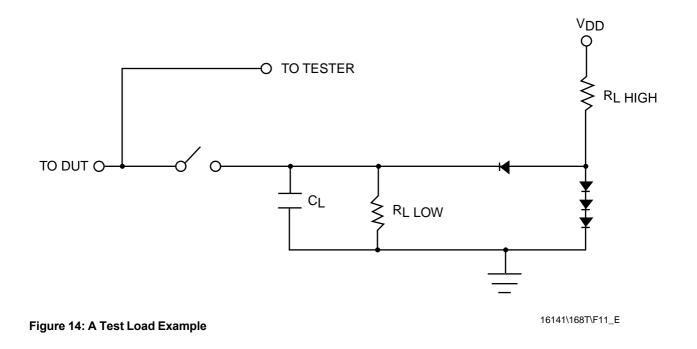
Figure 10: Software ID Exit amd Erase Verify Exit

28DW1612TS\F11_E

Exsample for Word Mode, in Byte Mode A-1= Don't care

Figure 11: RY/BY# Outputt


Figure 12: Reset Timing

AC test inputs are driven at V_{IHT} (V_{DD} *0.9) for a logic "1" and V_{ILT} (V_{DD} *0.1) for a logic "0" Measurement reference points for inputs and outputs are at V_{HT} (V_{DD} *0.7) and V_{LT} (V_{DD} *0.3) Input rise and fall times (10% to 90%) are <10 ns.

Figure 13: AC I/O Reference Waveforms

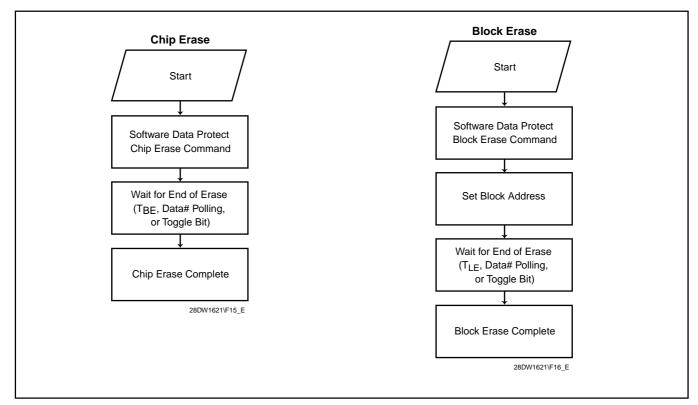


Figure 15: Chip Erase Flowchart

Figure 16: Block Erase Flowchart

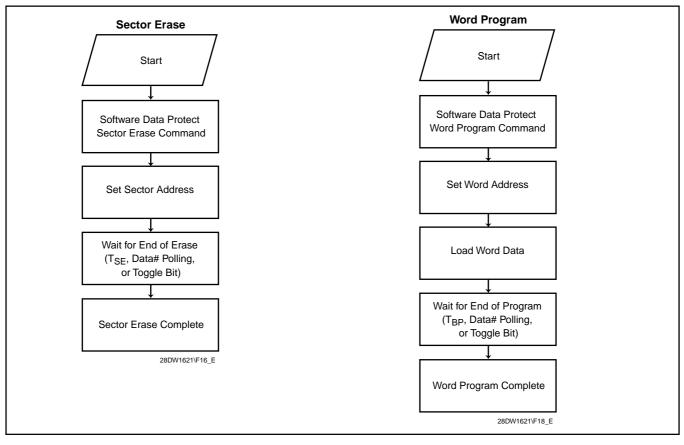
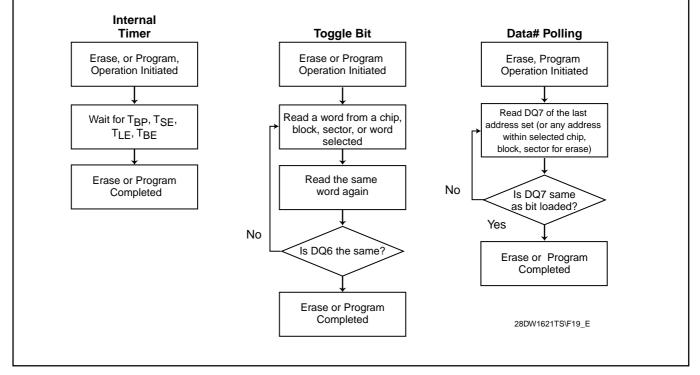



Figure 17: Sector Erase Flowchart

Figure 18: Word Program Flowchart

SANYO Electric Co., Ltd. Semiconductor Company 1-1-1 Sakata Oizumi Gunma Japan

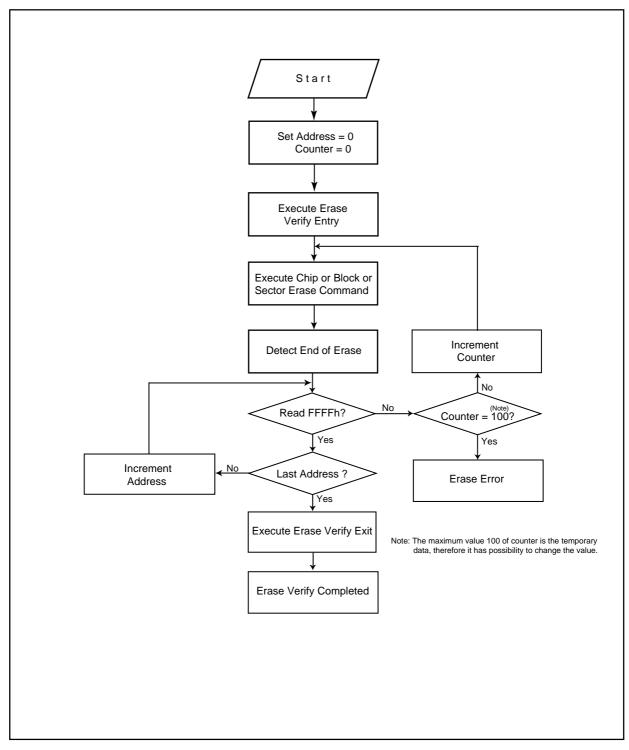


Figure 20: Erase Verify Flowchart